跳至主要内容

Drilling Waste Separation System Information


As the drill bit grinds downward through the rock layers, it generates large amounts of ground-up rock known as drilling waste. The conventional process of drilling oil and gas wells uses a rotary drill bit that is lubricated by drilling fluids or mud. This section discusses several alternative drilling practices that result in a lower volume of drilling waste generated.

Usually wells are not drilled from top to bottom at the same diameter, but rather in a series of progressively smaller-diameter intervals. Oil and gas wells are constructed with multiple layers of pipe known as casing. The top interval is drilled starting at the surface and has the largest diameter hole with large quantity of drilling waste. Drill bits are available in many sizes to drill different diameter holes. The hole diameter can be 20" or larger for the uppermost sections of the well, followed by different combinations of progressively smaller diameters.

Once a suitable depth has been reached, the hole is lined with casing that is slightly smaller than the diameter of the hole, and cement is pumped into the space between the wall of the drilled hole and the outside of the casing. This surface casing is cemented from the surface to a depth below the lowermost drinking water zone. Then, a smaller diameter hole is drilled to a lower depth, and another casing string is installed to that depth and cemented. This process may be repeated several times. The final number of casing strings depends on the regulatory requirements in place at that location and reflects the total depth of the well and the strength and sensitivity of the formations through which the well passes.

Traditional saying, wells were drilled to be relatively vertical and were completed at a depth to intersect a single formation. Thus, one full well was required for each completion. Modern technology allows modifications to several aspects of this procedure, thereby allowing more oil and gas production with less drilling waste generated.

It states how drilling can be done to intersect multiple targets from the same main well bore, how wells can be drilled using smaller diameter piping in the wells, how drilling can be done using techniques that minimize the amount of drilling fluid, and drilling fluid systems that generate less waste. 

评论

此博客中的热门博文

Mono Screw Pump Working Principle and Apllication

M ono screw pump , also called  sewage pump  or  progressive cavity pump ,  belongs to the rotor type positive displacement pump .   M ono screw pump  is depend ing  on the screw meshing with liner on the discharge and suction cavity to conveying liquid volume change.   It is a kind of method of pressurized screw pump, a main working parts by bushing has a double helix cavity (stator) and the stator cavity and its meshing singlehead screw screw (rotor).   When the input shaft through the universal joint drive making planets revolving around the center of the stator, rotor stator, rotor, vice is continuous mesh form sealed cavity, the seal chamber volume invariably uniform axial movement, the medium from the suction end of deputy to the stator, rotor pressure side, the suction medium sealed cavity through the stator without stirring and destruction. M ono screw pump  is an ideal pump used to feed drilling fluids to decanter centrifuge. Since mud is evenly pushed to pro

Water Based Mud Drilling Cuttings Management

In  geotechnical engineering ,   drilling fluid is used to aid the drilling of  boreholes   into the earth , o ften used while drilling  oil  and  natural gas  wells and on exploration drilling rigs , and  also for much simpler boreholes  like   water wells . Liquid drilling fluid is often called drilling mud. The three main categories of drilling fluids are water-based mud (which can be dispersed and non-dispersed), non-aqueous mud, usually called oil-based mud, and gaseous drilling fluid, in which a wide range of  gases  can be used. The main functions of drilling fluids include :  providing  hydrostatic pressure  to prevent  formation fluids  from entering into the well bore, keeping the  drill bit  cool and clean during drilling, carrying out drill cuttings, and suspending the drill cuttings while drilling is paused and when the drilling assembly is brought in and out of the hole. The drilling fluid used for a particular job is selected to avoid formation damage  and to limi

Oil Based Mud Drilling Cuttings Treating Solutions

  Drilling cuttings treating solutions will depend on the drilling mud characteristics. Oil-based mud is a mud  where the base fluid is a petroleum   product   such as diesel fuel , kerosene, fuel oil, selected crude oil or mineral oil. For OBM ’ s complexity, the drilling cuttings treating solutions will have more strict demands on  the processing  equipment. Oil-based mud are used for many reasons, including increased lubricity, enhanced shale inhibition, and greater cleaning abilities with less viscosity. Oil-based mud   also withstand greater heat without breaking down. The use of oil-based mud has special considerations, including cost, environmental considerations such as disposal of cuttings in an appropriate place, and the exploratory disadvantages of using oil-based mud, especially in wildcat wells. Using an oil-based mud interferes with the geochemical analysis of cuttings and cores and with the determination of  API gravity  because the base fluid cannot be distin